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A three-dimensional {3D) high-resolution MHD simulation scheme
on an unstructured grid system is developed for inhomogeneous
systems, including strong background potential fields. The scheme is
based on the finite volume method { FYM) with an upwinding numeri-
cal flux by the linearized Riemann solver. Upwindings on an unstruc-
tured grid system are realized from the fact that the MHD equations are
symmetric with the rotation of the space. The equation system is
modified 10 avoid direct inclusions of the background potential field as
a dependent variable, through the use of changed dependent variables.
Despite such a change of the equation system, the eigenvectors in
the mode-synthesis matrix that are necessary for the evaluation of the
upwinding numetical flux vectors can still be written analytically. The
eigenvalues of the MHD flux Jacobian matrix that are also necessary for
the upwinding calculations are derived from the well-known Alfven,
fast and stow, velocities. The calculations of the eigen vectors is dane
with special care when the wave propagations become parallel or per-
pendicular to the ambient magnetic field, because degeneration of the
eigenvalues occurs in these cases. To abtain a higher order of accuracy,
the upwinding flux is extended to the second-order TVD numerical fiux
in the calculation of FVM, through the MUSCL approach and Van
Leer's differentiable limiter. |r order to show the efficiency of the above
scheme, a numerical example is given for the interaction process of
high-£ supersonic plasma flow with the region of a strong dipole figld,
including magnetized low-# plasma.  © 1894 Academic Press, Inc.

1. INTRODUCTION

In recent years, magneto-hydrodynamic {MHD) simulg-
tion has attained an important position in the studies of
space and astrophysical problems [1-5]. Works in these
studies have gone in the direction of three-dimensional (3D)
MHD calculations, since the problems are inherently three-
dimensional. A serious difficulty in numerical MHD
calculations when applied to space and astrophysics comes
from the fact that many problems include strong non-
uniformities in treating various regions. Although there are
many previous works applying MHD simulation to space
and astrophysics, much effort is still needed to extend the
application of MHD simulation to problems which include
strong non-uniformities.
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In the area of hydrodynamical calculations, on the other
hand, much effort has been devoted in recent years, to
constructing efficient finite difference schemes, extending
upwind schemes to a higher order of accuracy [6]. Among
the many upwind schemes, very popular schemes are: (1)
based on the Roe’s approximate linearized Riemann solver,
{2) based on non-linear approximations of systems such as
Godunov or Osher [7], and (3) based on flux splittings by
Steger and Warming or by Van Leer. As higher order exten-
sions of upwind schemes, several types of high-resolution
schemes are currently in use. These include total variation
diminishing schemes are currently in use. These include
total variation diminishing (TVD), total variation bounded
(TVB), and essentially non-oscillatory (ENO) finite
difference schemes [6, 8]. '

The notion of TVD was first introduced by Harten [8].
He derived a set of sufficient conditions useful to construct
second-order TVD schemes. The mechanism that is widely
used for satisfying the TVD condition involves some kind
of limiting procedures. Adopting TVD finite difference
schemes, one can obtain sharper profiles to represent
discontinuities, whilst avoiding spurious oscillations,

There are many approaches to construct TVD schemes
from upwind schemes. Higher-order TVD schemes are
constructed using MUSCL or non-MUSCL approaches
[9]. The MUSCL approach is efficient to construct TVD
schemes from Roe’s scheme or flux split schemes. On the
other hand, the non-MUSCL approach for TVD schemes
can be used, employing an approximate linearized Riemann
solver, and is divided into two types: symmetric TVD and
upwind TV schemes.

The concept of TVD conditions can be extended to MHD
equations. If an upwind MHD numerical scheme satisfies
the TVD condition, it enables a stable computation with
high resolution and effective shock capturing. Brio and Wu
[10] showed a method to construct an upwind scheme for
one-dimentional MHD equations. Because the method of
flux splitting for MHD equations is not known at the
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present time, Brio and Wu [10] constructed an upwind
finite difference scheme for MHD equations adopting Roe’s
linearization procedure. Brio and Wu [ 107 also concluded
that non-lingar upwind methods are too involved for MHD
equations,

Tanaka [11] extended the work of Brio and Wu [10]
to 3D calculations, aiming at the application of MHD
equations to space and astrophysical problems. In order to
overcome difficulties in numerical calculations caused by
spatial non-uniformities, which are generally included in
space and astrophysical problems, Tanaka [11] developed
an upwinding MHD scheme on unstructured grid systems.
The framework employed for MHD simulations on
unstructured grid systems is the finite volume method
(FVM), based on the conservation law [12]. Upwindings
in FVM are achieved by adopting an important property of
MHD equations that their forms are symmetric with the
rotation of the space. In this framework, numerical integra-
tions of hyperbolic MHD equations can be stabilized
through the use of the TVD numerical flux based on the
MUSCL approach with the linearized Riemann sclver,

The phenomenon controlied by the coupling process
between different regions having quite different charac-
teristics seems to be more difficult to treat numerically. For
example, auroral physics is a typical case. In interplanetary
space, the earth’s magnetic field and plasma environment
interact with the solar wind which is the inevitable resuit of
the steady outflow of the ionized solar atmosphere. As a
result, the magnetospheric region is formed around the
Earth and energy flows in from the solar wind to the
magnetosphere. The auroral breakup is the release of this
energy from the magnetosphere to the polar ionosphere,
which ts situated at the lower altitude near the Earth,
interchanging the field-aligned currents (FAI) between the
two regions [ 13, i4]. In this problem, therefore, the main
process to be studied is the coupling effects between the two
different regions, namely the magnetosphere and the
ionosphere [15].

The representative sizes of the magnetosphere and the
ionosphere are extremely different. In order to calculate the
complex distributions of the ionospheric currents associated
with auroral phenomena, the grid spacing must be less than
100 km. On the other hand, the size of the magnetosphere
exceeds more than 100,000 km. If one uses a Cartesian coor-
dinate system and covers ali of the magnetospheric and
ionospheric regions by a grid system which is sufficient for
the analysis of ionospheric phenomena, the total number of
grid points will far exceed the available size of computer
memory. Howgver, the number of grid peints for the
magnetospheric region can be reduced to a large extent
because the characieristic scale of magnetospheric dynamics
is much larger than that of the ionosphere. In order to
achieve such a reduction of grid points, it is necessary 1o use
different grid point densities according to respective regions.
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This reduction of grid points becomes more and more
effective when the study goes to higher dimensions. Of
course, the computational time is reduced in proportion to
the reduction of grid points. ’

In many cases, planets and stars have a strong magnetic
field generated in their interior regions. In the case of the
Earth, the magnitude of the dipole magnetic field is about
30,000 nT in the tonospheric region near the Earth, while it
diminishes rapidly in the magnetosphere to about 10 nT.
Therefore, the magnitude of the intrinsic magnetic field
varies over a wide range in treating the wholé region in the
problem of magnetosphere—ionosphere coupling. On the
other hand, the variable components of the magnetic field,
which are calculated from MHD equations, exhibit a
similar magnitude over the whole region. As a result, the
ratio of variable to intrinsic components of the magnetic
field becomes extremely small in the ionospheric region.
These situations give other difficulties in the numerical
study of the coupling process between two different regions.
Especially, severe difficuities appear in the energy equation.
However, this difficuity, due to the wide range in the ratio
of variable to internal magnetic fields, can be avoided due to
the fact that the intrinsic magnetic field includes only poten-
fial components. Thus, 1t becomes important to construct
MHD calculations that suppress the direct inclusion of the
intrinsic components of the magnetic field as dependent
variables. In this paper, therefore, a modified equation
system will be derived considering such intention through a
change in the dependent variables. It will be shown that an
equation system with the above modification can be written
in the conservation form and can still be treated numericaily
through the upwinding TVD flux,

There are many other problems in space and astrophysics
which require the simultaneous treatment of several regions
having quite different characteristics. For the study of
problems hitherto mentioned by numerical MHD simula-
tion, the requirements are increasing for the use of a
non-uniform grid system and the suppression of the
potential-field calculations as dependent variables. To
achieve a flexible grid distribution in 3D space aiming at an
application to the problems which include strong non-
uniformities, unstructured grid systems are more suited
than structured grid systems, Unstructured grid systems are
also suited for the construction of a 3D body-fit grid system
around the Earth, the sun, and stars, which are the main
objects of space and astrophysical studies.

Now it becomes the purpose of this paper to develop a
new MHD numerical scheme which satisfies the following
conditions, aiming at the application to space and
astrophysical probiems; it is: (1) applicable to systems with
strong non-uniformities caused by an inhomogencous back-
ground potential fieid; {2} available on 3D unstructured
grid systems; and (3) in the form of a TVD scheme with a
higher order of accuracy.
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2. BASIC EQUATIONS

The non-dimensional conservation-law form of the ideal
MHD equations can be written in the Cartesian coordinate
system (x, v, z, t) as

ow oF 4G JH

= 5=

Bt+é‘x+6y . (1)
where the dependent variables are u=1(p, m,, m,, m_, B,
8.8, U)7, and F, G, and H are flux functions in the x, ¥,
and z directions, p is the density, m is the momentum, B is
the magnetic field, and 7 is the energy density, Using
Gauss’s faw, the integration form of Eq. (1) can be written
as

?
~Judv+f(an+Gn_‘.+Hn:)ds=0, 2)

ot

where dv and ds are the volume and surface elements of the
control volume and n is a unit vector normal to the surface
of the control volume.

Let us define a matrix which rotates the x axis to the
direction of n

: (3)

with
H. H L
Tl = r1.\.‘ Itl_r I‘l: 1

tix t2_\' r2:

then Eq. (2) is expressed as

S fudot [ TT(Fn, + Gn, +Hn) ds =0, (5)

dt

where t, and t, are unit vectors tangential to the surface of
the control volume and orthogonal to each other. Since the
form of the MHD equations must be unchanged for the
rotation of the coordinate system, the relation

T(F(u) n, + G{w)n, + H(u) n,) =F(Tu)=F(u,) (6}
must hold. Then one can obtain from Eq. (5)
%judHJT-IF(u,,)ds:o. (7)

Introducing new dependent variables u, ={p, m,, m,, m_,
le! B]_l" Bl:! UI)T = (p’ my, M, e, B.r# Bl)x’ By_ BO}"
B.— By, U—(B,-By)/f — B,2/(2f))T with the conditions
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B, /8t =rot B, =div B, =0, then the equation for u, can
be written in the conservation-law form as

o _
= [u dv+ | 77'F(uy,, Bo,) ds =0, (8)
ot

Wlth “1» = T“], mn= T1m= (mns m:ls mzZ)Ts Bn= Tl B =
(Bn! Brls Br2)Ts Blﬂ = TiB = (Bina Birh Blrl)Ta BDrr =
Tl BO = (B(Jn’ BOrI > BO.'z)T1 and

mli
m,m, B> 1 B} 1
P+ . "+—__Ban__+_BuBn
g 28 B 28 0
m, m, 1 1
—1;—_[}3113:1+BB0r|BOJi
my,m, |1 1
__r;——EBran'FEBOrzBUn
0
_ m "
F=|—"8,-—"38, . 9)
P Iz
&BIZ_@BH
o
m, B? ) B,
Ui+, +P|——"
( b2B B
X(?Bln"_ rlBlrl+rnlzBl|2)
B
—E‘i(& BOrl_m“ B()n)
B ! mﬂ' ml’
+_'é_g( p B{Jil 2Bl]n)
In expression (9), the B, terms are added to the second,
third, and fourth components of F, considering

rot B, x B, = 0. Analytically, these terms are equal to zero.
However, they are not zero numerically. For the derivation
of the last component of F, the relation mx B -rot B,=01s
applied. The first-order energy density U, density p,
momentum m, and first-order magnetic field B, are related
to pressure P by the equation

m? B?
P=-n(vi-5-5)

(10}
In these equations, the constants are f§ and vy, with
B=upoRT,/By®, y=the polytropic index, u=the
magnetic permeability, R-==the gas constant, p,=the
normalization density, By, = the normalization field, and
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Ty=the normalization temperature. Momentum m is
normalized by po(RT,)"* and time ¢ is normalized by
Lo /(RT)'?, with L, = normalization length.

3. NUMERICAL METHOD

From Eq. (8), a discrete formula of MHD equations in
the FVM style is written for the grid point / in the form

d ,
ol ulj V;+Z T lijEy‘(ulni’! u]m's ulnja ufnj's BOmj) Sx_';':Os
i

o (11)
where j denotes the grid points neighbouring the grid point
i, ¥, denotes the volume of the control volume cell which
includes the grid point i, T is the rotation matrix at the
interfacing surface between i and j, S; is the surface area of
the / and j interface, u,,;, Uy, Uiy, and uy,; are v, uy,
u,;, and u, . rotated by T, and By, is B, at the i and j
interface. In the first-order case, the upwind numerical flux
F,for (11)1s

Ejj= 15 {F(“lnjs B()m'j) + F(ulm’ B()m_',l‘)

— Ry |4, Ry Huy,;—wy, ), (12)

Here A, the {lux Jacobian matrix of F at the i and j inter-
face, is diagonalized for calculation of the mode synthesis

matrix R, and the eigenvalue matrix A, from the relations
AR, =R, A {13a)

oF

v au Lr

As seen from Eq. {13za), the mode synthesis matrix consists
of the right eigenvectors of the flux Jacobian matrix r,, and
the diagonal matrix A, consists of cigenvalues 1,

k=1~ 8. Without suffix /j, the eigenvalues 4, arc written
through u, as [ 10]

i

(W15 Bong)- {13b)

Ai=m', (14a)
dyz=m, |8, (14b)
Aas=m, £V, (14¢)
Aeg=m, LV, (14d)
ig=0, (14e)
where
VoL VE=4[Co+ B2 {{Co+ B?) —4C B2},
(15a)
Co=1p/p. (15b)

with the notation o', ={(g, mw',, wm',, wm',, B,, B,

Br:za U)Tz(p’ mn/ps m”/P, mzz/p5 Brr/ 6}0: Ba]/\/E_e
B..//Bp, UNT. Here, variables with ' have a dimension of
velocity. In the expression of eigenvalues, \/(,TO v 1Bl Ve
and ¥V, correspond to sound, Aifven, fast, and slow
velocities, respectively. Calculations of eigen vectors must
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be done with special care, avoiding the degeneration of
the eigen vectors when the wave propagation becomes
perpendicular or parallel to the magnetic field. Without i,
the right eigen vectors r, which correspond to 1, are:

1
m’n
m',
m',y
r=l, , (16a)
0
0
0.5 m"”
0
0
FB"; sgn(B,)
+B", -sgn(B',)
r;;=|0 , (16b)
B, /Blp
_B”n ﬁ)/p
F(B"om'y — B, m',;) sgn(8',)
+ {BHIZBJ’;I - B”H Bllrz)
ar
ap(m’, + V)
agm’ Fa, B, VB,
am' Fa, B,V B,
0
” 2
Tas= asB”quz Bip ! (16¢)
a BV, Bip
a;-0.5-m+a, V3 (y— 1) ta,V,m,
Fa, V(B ym' -+ B ym' ) B,
+a(—1)/(y— 1)'(171'2‘_C0)
+a,- (Uf2 —Co)( 8", B,",,
+ B 3B (B, + B )P
a.!‘
a,(m', £ V)
a,m', +a,B", /ColVy-sgn(B',)
am yta B,/ ColV, - sgn(B',)
0
res= _‘IfB”u \/M : Co/sz
' —afB”.eZ M‘CO/VIE ’
a,-05-m*+a, Viiy—D+ta, V.m,
Ta (B, m'y + B pm )
x/ColVysen(B' ) +a,(- 1)/(3-1)- (0,7~ Co)
+a, (0.~ Co) (B, B,
+ B3 B, o M(B” P+ BT 50

(16d)
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where

B, = (B, +e)(B 2+ 8,1 +2Y°,  (17a)

B\, =(B/, +e}/ (B, *+ B, +2)" (17b)

B = (B, +e)(B, 2+ B 2 +2%)"7,  (17c)
V=B )BT B 28 (17d)
B,',=B,.//Bp. (17¢)

ap=(Vy =BV, =V 2E, (171}

a, =V~ C)'P (V= VYV, (17g)

and ¢ is a small number. Comparing Eqs. {16a)-(16d) with
the case of B, =0, given by Brio and Wu [10], only the iast
components of r,~r, are different. They are written
through not only B, =B, + B, but also B,,,. Forry, a unit
vector is used with a small value for i;. For the evaluation
of A, some averaging procedure must be introduced to
determine u,,;, the symmetric average of u,, and u,,;.
Theoretically, the optimum choice for u,; is the Roe
average of w,, and u,,, However, such an averaging
procedure is not known for MHD equations. Therefore,
a simple averaging procedure is employed approximately,
although this procedure does not satisfy the first condition
for Roe’s matrix.

To obtain a higher order of accuracy, the MUSCL
approach is used, changing / and f to L and R, suffixes which
indicate variables just on the negative and positive sides of
the interface, in Eq. (12). Then the numerical flux is defined
by the relation

EU = % {F(uInRs Bl)m'j) + F(ulnl_z BOHU)

~ Ry | Are] Rey 7 (00— 1y}, (18)
with
Ar Rpp=RprAgy, (19a)
Uy, =Wyt 5 (1 — 35, ) (uy, —uy,,;0)
A (U4 3 )uy, —wg,) 4, (19b)
U=y, — 5 {1 — 350, —a,,)
+ (1 + 350wy, —uy,,) }/4, {19¢)

where the diagonai matrixes s, and s, consist of the so-called
Van Leer’s differentiable limiter. The kth components of s,
and s; are calculated from the kth components of u,,.
Without suffix &, they are written as

z(ulngulnf)(ulni — JI"lni’) tE

§;= ] 7, .
(Ui — i) + (U — Uy )+ 8

H

(20a)

¢ = z{ulni'_ ulnj)(ulnj_ ulni) +e
! (8 — ulnj}2 + (et —1ty,,)° + £

(20b)
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In the MUSCL interpolation procedure given by Egs. (19b)
and (19¢c), a fixed stencil is used. Interpolation points /" and
j' are obtained by extending the line which connects grid
points § and j to the neighbouring surface of control
volumes.

A serious problem in numerical MHID simulation is the
violation of the div B =0 condition. Not only numerical
roundoff errors but also the use of upwind fluxes and a
non-cartesian grid system make it hard to fulfill the
div B =0 condition automatically as Caramana [16] did.
In the present calculation, an extra equation is added for the
elimination of artificial magnetic monopoles. According to
Schmidt-Voigt [ 3], first-order magnetic field B, is replaced
at every several time steps, by a new field B, given as

B,.=B, +grad ¢, (21a)

V%= —divB,. (21b)

The Poisson equation (21b) for the divergence-cleaning
potential ¢ is written in FVM form as

Limg-(c,—r, Wg,— ;) ny-(r, —r, N ¢ —¢,)
;5( (rj‘ri‘)é * (rj’g'ri)z ) SU
= —ZBlm;,-S;,-, (22)

where 1., 1, 1, and r; are the position vectors of the ', j,
I, and i’ points, n; is a unit vector normal to the interfacing
surface between control volumes / and j. To solve Eq. {22),
the conjugate residual (CR) method is applied.

There may be a case in which the divergence-cleaning
procedure given by (2la} and (21b)} spoils the TVD
property of the scheme. However, it will be shown from a
numerical example in the following sections that sharp
shock-capturing properties are retained despite the use of
this divergence-cleaning procedure.

4. A TEST PROBLEM

In this section, a test problem is presented to show the
efficiency of above-mentioned scheme. As a numerical
example, we treat a system which consists of a dipole
magnetic field B, placed at x=y=1z=0 and an external
incoming MHD flow.

The grid system for the numerical calculation is generated
from the spherical coordinate {r, 8, ¢), with the number of
grids to be (36 x 40 x 48) in the (r, 8, ¢) directions. By this
grid system, the region of 1 <r <10, —r/2 <8 < /2, and
U < ¢ <2n is covered adopting uniform grid point spacings
for 8 and ¢, and non-uniform grid point spacings for r. Then



386

r, 8, and ¢ coordinates of grid points are given through
suffixes 1, j, and k by

rage=1+010G—1)+55(i—1)"%35%%,
Oy = (= 1) 7/39 — /2,
b=k —1)7)24,

with | £7<36,1 < j£40, and 1 <k <48, The grid spacings
in the r direction vary from 0.1 at » =1 to about 0.5 near the
outer boundary, considering the fact that small-scale flow
structures appear near the root of a dipole field. Because the
resulting grid system has nesting grid points at # = +#/2, it
cannot be treated as a structured grid system. The x, y, and
z axes are chosen to the direction of ¢ =, ¢ = 3x/2, and O =
/2, respectively. In this paper we want to call the xp plane
as the equaterial plane, due to the analogy with planetary
coordinates in the solar terrestrial system. Similarly, we call
the direction of the y axis and the z axis the dusk side and
the north pole. Then, the flow velocity at the upstream
region is assumed to be poining toward the — x direction,
including a magnetic field which is pointing toward the
— direction. The potential field By is given from
B,= (0,0, —100)" as

(23a)
(23b)
(23¢)

1
B0=F(3nr(Bd-nr)_Bd)1 (24J

where n, is a unit vector in the r direction.
The inner boundary conditions at r =1 are given by

P =p, for (m-n)>0, (235a)

épldr=0 for (m-m,)<0, (25b)
é(r*(m-m,))/ér=0, (25¢)
mxB,=0, (25d)

(B, -n,)=0, (25¢)

Hr(B,— (B, -n,)n,))/ér=0, (251)
U, =YPTT1+';; g—;;, (25g)

with T=T, for (m-n,)>0 and é7/ér=0 for (m-n,) <0,
where p, and T, are the density and temperature of the
plasma flowing to the calculating region from the inner
boundary. In the present calculation, p,=0.1 and T, =1
are adopted; n, is a unit vector in the direction of magnetic
field.

Quter boundary conditions at the upstream part of r =10
and 7/2 < ¢ < 3n/2 are

(26a)
(26b)

P=1,

m,.=—2.5, m,=m.=0,
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(26c)

(26d)

where T, is the upstream flow temperature measured by T,.
The outer boundary conditions at the downstream part of
r=10 and —n/2<¢<n/2 are given for all dependent
variables by d/6x =0.

The initial conditions for density and temperature are
p=1and T=T,=0.8 every where. Spatial distributions of
m for the initial states arc given for », =3 <r from the
potential flow past a sphere,

m=m, — = (3n,(m, n,) — m,),

200’ (27)

with m, = (—2.5,0, 0)". Similarly, B, for the initial state is
given by

1
B =B,———=(3n(B,-n,)-B,)

2(r/r,)’
1 . 2r°B
~=5(Gn(B,n)—B)+—5=  (28)
2
for r,=9<r with B, =(0, -0.2,0)T—2r,*B,/r,® and
I 2B,
=B,~——(3n,(B,-n,)—B,) — "~
1 b 2(:’/1’1)3( n(B,-n}—B,) r23
r13
+ 53 (3n,(By-n,) ~B,), (29)

Pry

for r; <r<r,. The initial condition for B, thus calculated
can roughly satisfy the outer boundary conditions while it
retains the div B, =0 condition.

In the present problem, some eigenvalues vary over a
wide range in the calculation region while some eigenvalues
are almost constant. As a result, the ratio of maximum
Ay to minimum A, becomes very large near the inner
boundary. Therefore, the values of |i,| are modified in
Eq. (18) as

Al = max(| 2|, 6 x max(k) [A!), (30)
where 4 is a small constant.

An explicit method is selected as the time integration
method. In this method, the CFL number must be less than
1.0. Therefore time step 47 is chosen to be

At =0.9/max(ijk) (%,}k) (31)

The test problem presented in this section can be looked
upon as an idealized model of solar-wind interaction with a
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planet having a dipole-like magnetic field. In the case of the
Earth, the problem is properly scaled by selecting L,=3R,,
with R, the radius of the Earth. Simulating the situation of
the solar wind, =5 is adopted to give a high § solar wind.
As for the ratio of the specific heats, y = 1.30 is selected for
the simulation of solar wind conditions. Considering values
of y, T, p, and m,, the Mach number of incoming fiow
becomes about 2.5. On the other hand, the magnitude of the
dipole field is set as |By| =100 at r=1 and 8§ =0. Thus, a
low-f§ condition is realized at the inner boundary, while a
high-# condition is retained at the outer boundary. In the
present calculation, parameters selected are not exactly
the same as the case of the solar-wind interaction with the
Earth. However, the present parameters reproduce the most
important situation of the problem that an essence of the
problem is the interaction of high-f supersonic plasma
flow with the region of strong magnetic field including
magnetized low-f§ plasma. In the present situation, the inner
boundary corresponds to the ionosphere, where the plasma
velocity perpendicular to the ambient magnetic field must
be decided from the FAI flowing into the ionosphere and
the ionospheric conductivity as

V.oVé,=(rotB,-n,),_,, (32a)
Vé,xB
mu(m-n,,)nb=p—¢;;7—°, (32b)
Q

where ¢ and ¢, are the ionospheric conductivity and
potential. In order to sufficiently analyze Eq.(32a) in the
ionosphere, there occurs a requirement that a sufficient
number of grid points must be allocated on the inmer
boundary. From this point of view, the inner boundary con-
dition (25d) corresponds to the case of infinite conductivity
in the ionosphere. The process of the solar wind-
magnetosphere—ionosphere coupling with these boundary
conditions cannot be simulated effectively, without the use
of unstructured grid systems.

5. RESULTS OF CALCULATION

Figure 1 plots a 3D configuration of the calculated
magnetic field B=B,+ B,. Here, magnetic fields that
thread the inner boundary are shown, with the left of the
figure to the downstream (—x or anti-sunward) direction.
The supersonic plasma flow that impinges on the dipole
field exerts dynamic pressure on the magnetic field. As a
result, the magnetic field is compressed on the upstream (x
or sunward} side and blown down on the opposite side into
a tail-like configuration. Thus, the intrinsic magnetic field
develops into the magnetosphere, as can be observed in this
fisure. The outer boundary of the confined magnetic ficld
constructing the magnetosphere is called the magnetopause.

The upper and lower halves of Fig. 2 exhibit the pressure
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FIG. 1. 3D plot of magnetic field lines which originate from the inner
boundary, The x-axis {(sunward direction) is toward the right and - -axis
(northward direction) is toward the top.

distributions in the noon-midmght meridian {xz) plane and
in the equatorial (xv) plane. In this figure, the formation of
a bow shock can be observed in the upstream region, as a
sharp increase of P to the downstream direction. There
appears a high-pressure region between the bow shock
and the magnetopause. This region surrounding the
magnetosphere is filled with shocked flowing plasma and
called the magnetosheath. In the meridian plane, a narrow
region which includes high-pressure plasma extends from
the magnetosheath to the inner boundary. This narrow

+z and —y axis

X axis

FIG. 2. Distribution of the pressure P in the noon—midnight meridian
{xz) and the equatorial (xy) planes. Contours are shown by solid lines for
the pressure levels greater than those in the incoming flow, and by dotted
lines for the smaller levels. The difference beiween contours 4P =0.22.
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region called the dayside cusp is exhibited very precisely in
the present calculation. Such a clear representation of the
dayside cusp had never been obtained in earlier works based
on the stroctured grid systems [2,5]. For instance,
Watanabe and Sato [5] gave a less obvious cusp structure,
afthough the total number of grid points used by them was
about 40 times larger than the present calculation.
Another high-pressure region behind the planet in the
downstream side is called the nightside cusp. Following the
nightside cusp, a relatively high-density region spreads
widely in the downstream equatorial plane. This region
called the plasmasheet carrigs field-reversing sheet current
and divides the northern and southern low-pressure regions
in the tail part of the magnetosphere. Thus, the plasmasheet
is compressed in the meridional plane. The high-pressure
region which extends from the nightside cusp toward the
planet along the magnetic field reaches as far as the inner
boundary. 1In the equatorial plane, the ring current which
surrounds the near planet region is formed as an extension
of the high-pressure region from the night-side cusp. These
structures in the inner magnetosphere can be calculated
precisely, because the unstructured grid system enables us
to allocate sufficient grid points near the inner boundary
without a severe increase in the total number of grid points,
The low-pressure region north and south of the plasma
sheet (around 1 <z< 5 and x< —1 in Fig. 2) is called the
lobe. Near the inner boundary, the density distribution in
the lobe is related to the inner boundary conditions (25a)
and (25g). At the root of the magnetic field [ine which con-
nects the inner boundary with the lobe, the flow velocity on
the inner boundary becomes outward, due to the evacuation
effect. In this case, it is necessary to fix more dependent
variables at the inner boundary, compared with the case of
inward flow. Thus, the density and pressure in the lobe
depend on the capacity of the ionosphere as an emitter of

plasma.
Figure 3 shows the distribution of the anti-sunward
velocity —V = —m_/p in the dawn—dusk meridian (yz)

plane. In the region outside the magnetopause, high-speed
flows dominate toward the anti-sunward direction. Near the
inner boundary, on the other hand, slower anti-sunward
(—x) convections dominate in the polar region, while
sunward { + x) return flows are seen around the ring-current
region. The anti-sunward and sunward flows extend to the
inner boundary along the magnetic field. These plasma
motions in the magnetosphere correspond to the
magnetospheric  convection induced by the soiar
wind-magnetosphere interaction. In the present calcula-
tion, extensions of the magnetospheric convection to the
ionospheric region are represented very clearly.

In the ideal case, the boundary condition (25d) will
suppress the plasma convection in the magnetosphere.
However, magnetospheric plasma convection can be
induced because the numerical diffusion cannot be exactly
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FIG. 3. Distribution of anti-sunward velocity — V, = —m_/p in the
dawn-dusk meridian (yz) plane. Solid, dashed, and dotted lines indicate
plus {anti-sunward), zero, and minus {sunward) contours, respectively.
The difference between contours 4V, =0.22.

zero. In a real situation, this diffusion effect is offered by the
atmospheric drag due to the collisional interaction of
plasma with the neural atmosphere around the planet. On
the inner boundary, the region of anti-sunward flow and the
boundary between the anti-sunward and sunward flows
correspond to the polar cap and the auroral oval,
respectively.

Figure 4 shows the distributions of plasma pressure P, the
cast-west component of magnetic field B, north-south
component of magnetic field B, and the —x component of
velocity — V', along the x axis for the sun—earth line. The
vertical scale for B, is &5 of other parameters. In this figure,
the positions of grid points are shown by marks on the cur-
ves. The pressure and B, suddenly increase at the bow
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FIG. 4. Distributions of P, —V,, —F,, and 0.1 xB_ along the
sun—planet line. Note that the vertical scale for B, is {5 the other
parameters,
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current
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FIG. 5. Distribution of field-aligned current (FAI) flowing into and
out of the inner boundary. This figure shows the top view of the sphere
which forms the inner boundary. Solid, dashed, and dotted lines show
contours for outward, zero, and inward currents, respectively,

shock, while — V. decreases there. This is the signature of a
fast shock. Behind the bow shock, P decreases at the
magnetopause, forming a tangential discontinuity. Struc-
tures of the bow shock and magnetopause are resolved by
few grid points. From these results, it is proved that the
TVD scheme enables an effective calculation of the MHD
equations with sharp shock capturings.

In the present calculation, sufficient grid points are
allocated on the inner boundary. Therefore, direct calcula-
tion of FAI becomes possible from B, on the inner bound-
ary. Figure 5 shows the top view of the spherical surface at
r =1, on which the distribution of FAI flowing into or out
of the inner boundary is drawn, The region of strong FAI
composed of dawn (—y} downward and dusk (+ y)
upward currents forms a partial ring, which is calied
region-1 current. Equator-ward of the region-1 current, very
weak current systems are seen on the dawn and dusk sides.
These current systems are connected to the ring-current
region in the magnetosphere and are called the region-2
current. Pole-ward of the region-1 current, a current pair is
seen around the foot of the dayside cusp shown in Fig. 2.
This current pair is called the region-0 current. Thus, the
present calculation can represent current systems very
precisely. The feeding of FAI to the ionosphere is an impor-
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tant result of the solar wind-magnetosphere—ionosphere
coupling. Here we can conclude that the coupling process
between three different regions namely the solar wind,
the magnetosphere, and the ionosphere, is simulated
successfully, despite the different characteristics of three
regions and the existence of a background inhomogeneous
potential field.

6. SUMMARY

In this paper, a 3D MHD simulation scheme is developed
for imhomogeneous systems, including a strong potential
field. The algorithm is (1) written in a formula which avoids
direct inclusions of background potential magnetic field as
dependent variables, (2) applicable on an unstructured grid
system due to the formulation by the finite volume method,
(3) capable of calculations with high resolution and efficient
shock capturings through the use of a MUSCL-type TVD
scheme, and (4) completed with the support of a divergence-
cleaning procedure. From a test problem, in which high-$
supersonic plasma flow interacts with the region of strong
magnetic field including magnetized low-f plasma, an
ability of efficient calculations and nonoscillatory behavior
of the scheme are demonstrated for the problem of
inhomogeneous MHD calculations.
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